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SUMMARY

The results displayed in this report demonstrate the feasibility of

handling moving mass problems by the finite element displacement method.

There is no apparent reason why the method could not be applied to gun

tube geometries - should engineering fund allocations be made available

for this purpose. (Nearly all of the work contained in this report was

funded through basic in-house research allocations.)

In the interest of ivaproved efficiency, more detailed study should

be given to the choice and use of integration algorithms. In the IBM

version of Hamming's method (employed in this work), the user is allowed

certain freedom to choose error weights. This choice can affect ac-

curacy and run times and therefore should be arrived at on a rational

basis.
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INTRODUCTION

Within the U.S. Army there has always been an interest in the bal-

listic response of the gun tube and projectile during firing. This

interest has several justifications - not the least of which are the

effects of tube motion on round accuracy and the reactions inducea

between the interior bore surface and the projectile - the latter hav-

ing to do with the structural integrity of the projectile casing and

the wear caused by excessive projectile/bore interface pressures.

During 1974 this laboratory reported a NASTRAN finite element anal-

ysis of the axisymmetric response of an unconstrained Mt113 gun tube to

the ballistic pressure/time loading corresponding to a 'zone three'

charge. Also computed in detail was the transverse response to the

curvature-induced 'Bourdon' load. Less detailed calculations alluded

to the potential response which could be expected from the tube as a

result of the moving concentrated w of the projectile along the

bore surface. Finally, hope was expressed for future progress in hand-

ling the various aspects of the moving projectile mass.

The Importarce of the Moving Mlass Problem

In more conventional applications the difference in the rcsponse of

a structure to a moving mass and to the weight of this mass is not very

great. However, if the movi.ng mass is an appreciable fraction of the

total stru.tural mass of the problem - or if the velocity of the mass

is very larga, an unconventional structural problem is defined in which

the difference may be quite pronounced. There a*.e at least two illustra..

• * * _ __ __4.
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tions which come ti) mind: (1) - a railroad train crossing a long
i

trestle (in which the moving mass comares to the mass of the trestle)

and (2) - a nrojectile traversing a long tube (in which uncommonly

high velocities are evident), We are professionally interested in

the latter as a knowledge of the resnonse of a tube to a moving mass

leads immediately to a good estimate of the resultant interface pres-

sure between the projectile and the bore surface - an important first

stean toward the ultimate understanding of the causes of bore and

muzzle wear problems and proner design of projectile casings and

rotating bands. The importance of the structural resronse of the •

tube in altering the round trajectory is also apparent. Thus treat-

ment of the moving mass nroblem has a wide base of military justi-

fication.

State of the Art in lIoving Itass Problems

Although the method of computation reported herein is immediately

aprlicable to a finite element beam model of a gun tube, it is first

necessary to assess the accuracy of the method by applying it to a

problem which has received prior treatment and reported in the liter-

ature. The most common base for corMarison has been the experimental
2

wor, of Ayre, Jacobsen, and llsu - rresumably because of the lack of

(1) Stokes, Sir George G., "Discussion of a Differential Equation Re-
lating to the Breaking of Railway Bridges," Trans Cambridge Phil Soc, .

8, p. 707, 1849 "•

ý2) Ayre, R.S., Jacobsen, L.S., and Hsu, C.S., "Transverse Vibration
of One and of Two Span Beam4 Under the Action of a Moving Mass Load,"
Prcc. of First National Congress on Applied Mechanics, June 1951

2
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any simple analytical solution with which to compare results. C The

analytical solution of Schallenkan is not convenient for general

application - this will be mentioned further on in the report)

This report is therefore concerned with ,redictinp. the resnonse

of a uniformsimply surported beam while subjicted to a concentrated

mass moving along its length at constant velocity under the influence

of gravity. The method eimloyed, hnwev'jr, is immediately applicable

to time variant mass velocities as wall as other boundary conditions

and variable beam cross section.

Before coymencing with the detall of the mnving mass problem it

"may be worthwhile to point out the theoretical differences between

rroblems in which massi are in motion and those which involve only

moving forces.

To begin with, moving loadi* are but special cases of time and

space variant forcing functions f(x,t) for one dimensional structures

such as beams. The customary bear equation of forced motion can be

written 3

MR- + Lw • f(z.t) ... (1)

wiere '1 and L are operators:

2 2
It oA-, Lu (E13 /Ax

(3) Tong,,. K.. Theory of 'Iechanical Vibrations , J. Wiley & Sons, 1960
- . 3on

• The term 'load' is intended to be general and to represont applied
loads such as moving forces and/or masses

3
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Solving the homogeneous form of equation (1) (f(x,t) = 0), i.e., the

free vibration problem-leads to the eigenfurctions rn(x) and the

eigenvalues wn with which any forced motion prmblem (f(x,t) e))

can be solved.

Transforming to modal coordinates Pi(t) defined in the expansion:

w(xt) a E pi(t)ri(x)
1

leads to an infinite naober of differential equations which are

I'

uncoupled:

Now if f(x,t) is a moving concentrated force i.e.,

f(xst) a -Po6(x-vt)

then (3).,becomes:
mij~i + wi pi) " "Port ¢vt) ... (4)

The solution to (4) can be written immediately in terms of the

eigenfunctions and eigenvalues of the free vibration problem.

• For a moving ma•s however,

%

! - *

Sf(x-t) - w 6.(x-vt).

4 4

• • • • • • • • • • • "
-• • .- • • ,1 •'' '. o ,' '- .'• . .' '"" '- ;•-•r• •" : '• •' ' '• • •, •'.'. ,',-•' -'.•. . . .. . . •.-, .. ,• • •7-



I

When substituted in (3), the right hand side becomes:

~-p 1ew/at2ri Cx)6 Cx'vt)dx I a2w/at2ri Cx)l(C-•)

but Ji/at2j w W(vt) + 2* 1(vt) + V2w"1(vt) ; 'aa/ax

x~vt

using (2): 2w/at 2 I - V{rj(vt)pj + 2vrj(vt)pj + v2rj(vt)pj)
xuVt

then (3) becomes:

mi1 (Pi + w2 pi) a -% i (rj(vt)pj + 2vrj(vt)Pj + v2 r"(vt)pj)

oo(S)

In contrast to (4), equations (5) are not uncoupled. In fact all of

the variables pit i a 1, - , appear in each of the infinite nuoer

of differential equations. To make matters worse, each variable has

a time-variant coefficient. To date the only exact mathematical

treatment appears to be that due to Schallenkamp4 involving a triple

infinite series equation for unknown Fourier coeffidients.

Thus the whole concept of natural frequencies and modes Of vi-

h ition loses its value in quanitative determination of the response

of a system with time variaist properties - uf which the moving mass

is but a special case. For every location of the mass along the bean

we have a new infinity of eigenvalue solutions. With an infinite num-

(4) Schallenkamp, A., "Schwingungen von Tragern bei bewegten Lasten,"
Ingenieur-Archiv, v.8, 1937, pp. 182-198

%a

-.. , ".. 77
.•" .!-.

-•_ • • SJ S S • S 0 0l 3 1 '



ber of locations for the mass to occupy, we thus have a double infinity

of eigenfunctions and eigenvalues.

Equation (1) can, however, be .,olved iiumerically - xegardless of

the space and time dependent material properties and the forcing term.

In what follows we eliminate the space variable through the finite

element process. The time variable is handled by a numerical in-

tegration procedure of common variety (predictor-corrector). In

essence therefore, we approximate our continuum description (1), by

a finite number of ordinary differential equations with time depen-

dent coefficients.

Continuum Description of the Iloving AIass Problem
1IM

In previous work 7 a derivation was ;iven for the equatioi of

forced transverse motion of a beam modei of the Mtl13 gun tube:

(Ely")" a -k(xt)y" + (pAXo(t) + pAgsina)y"(x-L) * (pAXo(t) ÷

+ pAgsinm)y' - mp(y + 2vt' + gcosa + v2 y")6(x-vt) - PgAcoss - pAy

... (6)

This equation assumes that A. the beam cross section is uniform and

that v - the velocity of the moving mass tm is constant. In that we

will be applying the equation to beam elements of uniform and equal

cross section the former assumption is consistent. This restriction

is not necessary to the generality of the method. The assumption of

(7) Simkins, T.E., Pflegl, G.. and Scanlon, R., "Dynamic Response of
the M113 Gun Tube to Travelling Ballistic Pressure and Data Smoothing
as Applied to XM15C Acr"eleration Data," Watervliet Arsenal Technical
Report WVT-TR-750lM, April 1975

S. 6
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constant velocity is motivated by our desire to compare results with

the work of Ayre, Jacobsen and Hsu. In (6) the term k(xt)y" is the

so called 'Bourdon' force. Terms in Xo represent transverse forces

induced by axial recoil acceleration when beam curvature and slope

are non-zero. Terms in pAg are due to the beam weight. ,done of

these forces are of interest in this report which deals exclusively

with forces induced by the moving mass:

i.e. f(xt) a -.M(y + 2vt + g * v y")6(x-vt) ... (7)

where a, the tube elevation angle, has been made equal to zero.

Thus the special version of equation (6) we will be concerned with

in this report:

Ely,,, PAY -mp( + 2vt' + g + v2y")6(x.vt) ... (s)

where EI.,p and A assume constant values. The left hand side of

(8) is recognized as originating from the simplest of beam theory,

i.e., where the entire transverse deflection of the beam is assumed

to be due to bending moment only. The right side of (8) therefore

represents the totality of applied loads, the first term corresponding

to the inertia of mp; the second is a 'Coriolis' type load; the third

is due to the gravitational force on m (its weight) and the fourth
p

is the 'centrifugal' force due to mp following the beam curvature.

The Dirac - delta function -6- specifies that each of these forces

acts in a concentrated fashion at the location x - vt along the beam.

As written equation (8) is a continuum description of the problem.

-.. '7
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Using the method of finite elements the space variable, x, will be

discretized - resulting in a set of ordinary differential equations

with time as the independent variable.

THE FINITE ELEMENT DISPLACEMENT METHOD

The basic procedure in finite element procedures is to consider.

the structure of interest as being composed of elements connected

together at adjacent attachment points - called nodes or lrid points.

For the case at hand1 the elements will be considered as short beams

connected end to end to form the longer beam structure of interest.

One then seeks to relate (at least approximately) the displacement at

any point interior to an element solely in terms of certain generalized

displacements assumed at its attachments.

Figure la shows the beam structure of interest (corresponding to

equation (8)) broken down into three shorter beam segments or !. ts.

The generalized displacements at the points ,of attachment consist of

one translation and one rotation. (We could define more). It is ob-

vious that when adjacent elements are connected the element displace-

ments at each point of attachment must agree, i.e., must be continuous.

e.g. u * u2 * etc,

This continuity requirement between element displacements therefore

reduce3 the number of generalized r•i4 point displacement'. For the

three beam elements shown in fig l(a), the number of independent dis-

placements is thus reduced from twelve to eight upon connection of

the elc:nents as shown in figure l(b..

8
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Figure 1(a). Finite Element Breakdown of Beta Structure.

U 3h7

U2

Figure 1(b). Interconnection of Bean Elements to Form Bean Structure.

y
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Figure 1 (c). A General Beam Element in Deformed Configuration.
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Letting y(x,t) represent the transverse displacement of the beam con-

tinuum between the end points of a given element (fig l(c)) the pro-

cedure is then to approximate y(xt) as a linear function of the

generalized element displacements u!. (The assumption of linearity

will lead to linear differential equations in the u ) Since there

are four u per element - all of which are as yet arbitrary - we can

try a polynomial expression with four arbitrary constants, i.e, a

cubic:
y(x) - ao alx e a x.2+ x3 - a x

0 1 2 3 1

where, in the latter notation we intend that a sum be performed over •.I' .

repeated index i, with i ranging from 0 to 3.

The ai can easily be determined from thA four conditions:
i~

e ye(Ot u,
y(Ot) - uI ; y'(00t) u U2

y(910 - uy t ; e)

The result can be expressed as the vector product:

JO..
ee!

y(xt) a a(x)u ; 0 < x .. (9)

explicitly,

2 3 2 3 2 31(32
y(xt) - { I-* 3LC * (&-2& *: )1 3& -2q I(C _-C2) } ue

u a
2

where • * x/ u.

10
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Equation (9) constitutes a formal discretization of the continuum in

that all interior displacement information has been referred to the

end point, or element, displacements. The goal then is to determine

these displacements ue (t).

When subjected to sets of applied forces and constraints (boundary

conditions), the beam element responds according to the laws of

mechanics from which we are free to choose any one of' several in

which to formulate the equations of motion of the element. It is

convenient to employ the principle of virtual work for dynamic load-
ins - which states that in a virtual displacement 6y(x) of the

beam element from its instantaneous state of equilibrium, the incre-

ment in strain energy, i.e., the virtual strain energy, is equal tow.

the sum of the virtual work done by all the forces including the

inertia loads.

"i.e. au a 6W . ioeyyAdx 466(10)

where 6U represents the virtual elastic strain energy resulting from

the virtual work 6W of the applied forces and the virtual work of

the inertia forces. (p is the material density and A the beam cross-

sectional area.) In general the elastic strain energy due to a vir-

tual displacement can be written:

6U - $a6cdxdydz ... (l)

v
where a is the induced stress due to virtual strain 6t.

(5) Przmieniecki.J.S., Theory of Matrix Structural Analysis, McGraw
Hillb 1968, p. 267

•°.11
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The virtual work due to applied forces f(xt) per unit length:

6W = /o(x,t)6ydx

Thus (10) becomes:

fa6cdxdydz - ff(x,t)6ydx -fpy6yAdx ... (12)
v 0 0

Hlooke's Law specifies:

a =

In beam theory, 8 E, Young's modulus, and c a hy", h being the

distance from the beam neutral axis to the fiber in which a is being

defined. Substituting in (12), the left term becomes:

2L
f E yh2y6y"dxdydz a EIf y"5y"dx

0 A 0

so that (12) becomes:

EIfy"6y"dx a ff(xt)6ydx -f oy6yAdx
0 0 0

M laking use of the approximation (9)J i.e.. y a a(x)ue

6y a a(x)6Ue and 6y" a"Cx)6ue

Substituting these expressions in (13):

il.lel,,auedx f6;eif(x,t)dx - pAf6ae8auedx
0 0- 0 - r

.,,-T
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Since the virtual displacements u. are arbitrary:

I z t
{pAladx }uI + { EI 1"a"dx uu fif(x,t)dx ...(14)

0-- 0 - - 0-

(a bar over a quantity denotes its transpose)

The nxn matrix coefficient expressions (n a 4 for the problem at hand)

of U and u deserve to be called me and k respectively and the

right hand term is the force vector fo whose elements replace the

distributed and applied forces present in the continuum problem.

These forces are considered as being applied to the ends of the

element e. The matrices me and ke have been evaluated many times

in the literature6 and will simply be repeated here for beam elements

of four degrees of freedom.

12

61 
412 sym

ke * El/I 3 .

-12 -61 12

6L 212 -61 412

1S6

22Z U12 symm

me - pA/420 *

- 54 13L 156

-11L -3I2 -221 412
LW4

(6) Przmieniecki, J.S., Theory of Matrix Structural Analysis, McGraw
Hill, 1968, p. 81, 297

13
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To form the force vector feth epresbn fx rmeuto 7

is substituted into the right side of equation (14).

sstitusi h fe Afm +x.2vý *g +v2y")6(x-vt)dx

I0 (vt(L

a. 0 otherwise

where c1(t) ajvt)i(vt)

Kc 3(t) u - -iI vt

C3(t) v 2 (vt)a",(vt)

E~quation (14) can then be written:

(,, + mui'c)t''e *0 * c()u m (vt)
Cm Nc(**- (e(t) *p3) Mpg

0. Ovt'cL

or simply,

e*)ý Iut)(t)ue e(

14
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Outside the interval 0 <vto , the time variant coefficients ci(t) and

a(vt) must be replaced by zeros. This can be accomplished by nullify-

ing the mP factor outside this inte!-jal.

Equation (15) represents a set of n ordinary differential equations

with time dependent coefficients. They are the differential equations

of motion for any beam element of dinsity p and section modulus El

as well as cross-sectional area A. All of these element properties

may differ from element to element,

STRUCTURE EQUATIONS OF MOTION

The equations of motion for the combined structure, i~e.,

CtlU_ + C(t)_ + 1(t)!. - F t) ... C16)

are formed as follows.

Each term of equation (15) constitutes a force - , at the element

attachment points, i = I thru n. When all elements are joined the

resultant force at the connections (grid points) is the sum of the

individual forces at the attachments. For example, the inertia forces

at the right end of the first element (cf. fig 1) are to be added to

those at the left end of the second element to yield the total inertia

force at the connection grid point.

i.e., the inertia forces acting on the first element - element #1

in figure 1 - in the ul, u2 , us, and u4 directions are the vector com-

ponents:

1 -1Yi= ijuj

15 '-4
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Summation over repeated subscripts is intended and i & j range from 1

to n. Similarly for element #2:

, * . 2  "'2

Upon joining these two elements, combines with the force 2 and31
'1 with ý2 so that the resulting forces on the two-beam substructur

are, for the case n * 4:
€1l 1 l 1 l 1 .. 1

1 11 12 13 14 0 0 0 0 Ul1

1 1 1 1 .01'51 p p p 0 0 0 0

2 21 22 23 24 0 0 0 0 2
1 2 1 1 1 1 2 2 2 2 (1

3 1 * 31 32 u33 u34 11 12 13 14 3
1 + 2 1 1 1 1 2 2 2 2 40l

4 2 41 42 43 44 21 22 123 24 4
2 u2 ,2 u2 2 .2
30 0 0 0 31 32 33 34 1
2 2 2 2 2 u2
'45 0 0 0 0 U41 •42 U43 V 44 2J -2

Lu4

Enforcing the equality of the displacements, velocities, and acceler-

ations of the attachments, i.e.

-l " U5 and u I =

3 1 3 4 2 4

where the upper case letter denotes that UZ3  114 are grid point

accelerations in confornance with fi,'ure l(b).

16
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Hence in terms of grid 2oint notation:

'1 1 1 .1

1 11 12 13  14  9 C 'J111 1 1

2 21 22 23 24 02 !2

1 1 1 2 1 2 2 2(3 U31 A32 (e 3 3" 1 1)(U 3 4+U412 ) U1 3  1A U3

1 I1 (UI+ 2 )(l + 2 U2  2 I
Y4 U41 42 43 21 44 22 23 '24 U4

02 2 2 2
5 31 32 33 34 US

41 42 43 44 U6

a t 
4

M(t)U(t) j.. the inertia forces acting on the grid points

of a 2-element substructure. The other forces in the equations of mo-

tion for this structure are formed by similar superposition. Thus the

structure equations of motion are formed by overlapping and samIng the

element matricts wherever a grid point cimnection is made. For an N -

element beam there will be N-1 such overlaps (shown schematic•ally in

figure 2). Each overlap will contain n/2 entries from the lower right

corner of the nxn matrix corresponding to the olement to the left of

the grid point - and n/2 entries from the upper left corner of the

matrix corresponding to the element to the right of this grid point.

These overlapping elements are to be summed.
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It is to be noticed from equation (IS) that in general, the coeffi'-

cient matrices 0e , Ye and Ke consist of a constant part (null in the

case of .e) and a time variant part which derives from the moving mass

rmp . These time variant elements are nul! except when t is such that MP

is located within the length of a particular beam element, Only then

are the time-variant components of the corresponding element matrix

finite. Thus in figure 2,one conceives of a conventional matrix of

constant coefficient multipliers of the acceleration, velocity, and

displacement terms plus a time variant set of components which propagate

in a band along the diagonal of each structure coefficient matrix as the

moving mass traverses the beam in time. Thus at any instant only n of

the structure equations of motion possess time variant coefficients .

n being the number of element displacements (degrees of freedom) con-

sidered for each beam element - four for the caseat hand. Thus the

prospect of solving the full set of equations numerically - without

incurring ext-aordinari-ly long computer rw, times - would appear to

be good. For example it is not uncommon to solve via computer, a

fifty degree of freedom transient problem in conventional structure

dynamics via the finite element technique - wheo all of the coefficients

are constant in time. It should therefore involve only a moderate in-

crease in computation time to allow four of these equations to take

on time-variant coefficients as in our problem of the moving concen-

trated mass. Roughly speaking one might expect that each time-variant

matrix element will create additional computation no greater than that

caused by adding another degree of freedom to a convantional constant

coefficient problem. Thus a 50 degree of freedom problem - e.g.,

19
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twenty-four connected beam elements subjected to a moving concentrated

mass - could be solved with a computation time not in excess of a

ninety-eight degree of freedom problem in which all the matrix coef-

ficients are constant. Mse~t), Nt), and Ke(t) each comprise sixteen

time dependent components).

Boundary Conditions

A great convenience of the finite element procedure - as compared

say, to the Ritz or Galerkin procedures - is that all ambiguity is

removed in choosing the boundary conditions to enforce. ( This is due

to the particular stage of deduction at which the finite element ideal- I
ization is invoked in a variational procedure*). In practice all one

has to do is mimic physical reality. For example, a beam with hinge

(simple) supports at each end requires that the corresponding displace.

ments vanish; eg., in a three-element beam model, U1 a U7  0 0. Simi-

larly a clamped cantilevered beam would insist that U1 * U2  0 0. In-

stead of specification of particular zero values, however, it is more

efficient to merely delete the corresponding rows and columns from the

coefficient matrices rIM C, and K of equation (16). Thus for the case

of a three-element hinged-hii d beam, we simply delete the first and

the seventh rows and columns m these nstrices. Similarly we delete

the corresponding elements from any force vector F , appearing on the

right hand side of this equation.

*Conversations with Dr. Gary Anderson, Applied Mathematics and Mechanics
Div, Benet Weapons Laboratory, Watervliet Arsenal, Watervliet, N.Y. .
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PROBLEM STATEMENT AND SOLUTION

For the purpose of comparing results achieved by finite elements

with those appearing in the literature, the problem to be solved is one

of three beam elements connected end to end to form a simply supported

beam having uniform cross section and material properties. A moving

mass, mp , is assumed to traverse the beam from left to right at a

constant velocity v - see figure 3.

Deleting the first and seventh rows and colums from the coefficient

matrices LiC and K along with the first and seventh components of the

vector F of equation (16) results in a six degree of freedom problem

- that is, six coupled equations of forced motion. These equations

will be solved numerically with MP and its velocity v. serving as

parameters.

In reality we have no clairvoyance to guide the choice of values

for mp and v except, of course, to repeat those used in the literature

• .so that a comparison may be made. It appears, however, that the

values chosen by Ayre, et al. were not compietely arbitrary in that

certain values of v will cause resonant (secular) behavior in the

moving force problem. From equation (3) we can verify that resonance

will indeed occur for any value v = v , such that mii(v*) W 0. Al-

"though applicable only to moving force problems, it is intuitively

"plausible that extraordinary behavior in the moving mass problem

might occur for values of velocity not far removed from these values

v*, Having no 'closed form' analytical solution with which to an-

ticipate points of singular - or otherwise interesting - behavior, one

'* 21
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Figure 3. Finite Element model for .,loving lass Problem.
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can do no better than to at least allow the velocity of the mass to

range through the lowest v* which will cause mii to vanish. This

apparently was the reasoning behind the choice of velocities investiga-

ted by Ayre, et al, who performed experiments in which v was chosen

as v*/4, v /2, and v* for the moving force and v*/4 and v*/2 for the

moving mass - v* being the first value of v to cause mrii to vanish,

i.e., the first resonant or 'critical' velocity of the moving force

solution. (Ctaintaining contact between the beam and mass for velocities

higher than v*/2 was apparently impossible.)

For the simply supported beam being considered:

m M- a2 2 . 20017

where ai - iw/L, L being the overall length of the combined beam

structure and wi a 2 YtI/PA 8
iti

Table I lists ti e material constants and dimensions employed for the

three identical beam elements used in this work. From these values

one calculates from (17) for iml:

v' u 899.13 in/sec

IWe intend to examine numerical solutions for the moving force and
*

the moving mass throughout the range 0 <v <v v
Two primary references will be used as basis' of comparison:

8
(i) The exact solution for the moving force solution which for

;* (8) Nowacki, W. Dynamics of Elastic Systems, Chapman & Hall Ltd,
". London, 1963, p. 136
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TABLE 1. MATERIAL PROPERTIES AND NOMENCLATURE

Mlaterial aluminum

Density 3.14 x 10 4 lbsec2/1n 4

9

L Overall Boam Length 31.

z Length of each element 120.0 in

P AL bearn \lass

m ,loving \,lass 0.0, oAL/4, pAL/2
4p

Young's Modulus 1.0 x 107 psi

A Beam Cross Sect. Area 31

I Beam Area Moment of Inertia (fixed by choice of wI below)

h Beam Thickness 2.0 in.

Wl/2w Beam Fundamental Frequency 1.25 hz

• /2 *

v !lass Velocity 100., v /4, v/2, v

v Fundamental Resonant Velocity 899.13 in/sec

24
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the case of a moving concentrated downward force -Mp (x-vt) is

fsnxavinn tsni22 2
y(xt) a -2mpg/pAL sinanx(anvsinwt - WnSinanVt)/wn (anv 2_ 2

,....(s)

The finite element solutions for the moving mass problem (Equation (16)

after imposing support constraints) with mp a 0 will be compared with

computations of (18) above.

(ii) The experimental work of Ayre, Jacobsen and Ilsu 2 . The mass

velocities employed in this work were quasi-static v ; 0, and v v*/4,

v*/2, and v The moving mass values chosen were mp- 0, and mp -

PAL/4 and pAL/2 where pAL is the total beam mess,

Equation (16) is solved using Hamming's modified predictor-corrector

method which uses fourth order Runge-Kutta method suggested by RalstonO10

for adjustment of the initial incrennnt and for computation of starting II
values, The method is taken directly from the WB1I Scientific Subroutine

Package for the IBM System #360, re: Programmer's Manual # H20-0205

available this laboratory. The method was found to be about four times

faster than using the Runge-Kutta method throughout the entire problem.

In general, run times in the order of 20 - 30 minutes on the IBM model

44 computer.

(2) Ayre, R.S., Jacobsen, L.S., and Hsu, C.S., "Transverse Vibration
of One and of Two Span Beams Under the Action of a Moving Mass Load,"
Proc. of First National Congress on Applied Mechanics, June 1951

(10) Ralston and Wilf, Mathematical Methods for Digital Computers,
Wiley and Sons, New York, London, 1960, pp. 95-109

25
I.4

0 0 0 0 _ • • * 4 g * e
. .- .. •••• `• • •`• • .`.• • :.; `• ••.`•`••.` ... . . . . .• . . .• ...- .. . • "'....""'.," '\' ' '" '* )* S .U-. .....''"." " •••• ' ''% " • •'"-'""°•°



Results - ?joving Force

Figures 4 through 7 show the transverse displacement of the bean at the

grid point locations x a L/30 2L/3 as computed either by. the finite

element method or by evaluation of the exact solution (18) - any dis-

crepancy between the results being too small to be discerned even in

plots of this scale. This is substantially less error than appears in
489

other treatments yielding approximate results,

Using the relationship (9), i.e., y(x,t) - a(x)ue(t) with x a vt,

gives the displacement directly beneath the moving load to be compared

with the results of Ayre, et al, who recorded displacement information

exclusively at this location. Figures 8 - a,b,c shcw these comparisons

and it is obvious that the agreement with experiment is much better in

figures b and c than in a. Actually, Ayre and his co-workers experiencid

considerable experimental difficulty when the force was translated at
v */4. Quoting from their publication 2 in which the authors remark on

their disagreement with Schallenkamp's theoretical solution for the

moving force (evidently a three term approximation of expression (18)):

... "The agreement is generally good [except at v /4] where it has been

found that comparatively small errors in velocity may result in marked

differences in the bhape of the trajectory." ... In 8a the theoreti-

cal curve used by Ayre as a basis of comparison has been included.

(2) Ayre, R.S., Jacobsen, L.S., and Hsu, C.S., "Transverse Vibration
of One and of Two Span BLdms Under the Action of a Moving Mass Load," •-
Proc. of First National Congress on App:.ied Mechanics, June 1951

(4) Schallenkamp, A., "Schwingungen von Tragern bei bewegten Lasten,"
Ingenieur-Archiv, v.8, 1937, pp. 182-198

(9) Hutton, D.V., and Counts, J., "Deflections of a Beam Carrying a
Moving Mass," Trans. ASME, Sept, 1974, p. 803
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The exceptional agreement (using only three finite beam elements) of

the finite element results for the moving force gives confidence in ex-

tending the technique to the moving mass problem - for which no simple

solution as (18) exists.

Results - Moving Mass

Figures 9 through 14 show the transverse displacement of the beam at the

grid point locations x a L/3, 2L/3 as computed by the finite element

procedure for various cases of velocity and mass values. Again use

will be made of relationship (9) to convert this inrormation to dis-

placement beneath the moving mass so that a direct comparison with the

experimental results of Ayre, Jacobsen, and lisu can be made. Figure

15 - a,b,c shows this comparison to be quite good - excellent agree-

ment occurring at the grid point locations. A closer look shows, however,

that the slopes of the curves gener&.sad by the finite element analysis

are discontinuous at the grid point locations. The reason for this is

that the displacement approximation (9) is built from cubic polynomials I
wnich are not continuous in the second derivative at the grid point

connections. Indeed, only continuity in y and y' were demanded in

constructing these p .omials.

The discontinuities of y"(x) at grid points might not be serious if

it was not for a 'force' in the continuum equation of motion (8)...
2y,

mpv y"(x). Thus at higher velocities jump discontinuities in y" will

cause increasingly powerful disturbances which are nonphysical iii

character. This is apt to be especially influential in armament

*Note: All displacements are normalized with respect to the displace-

ment which occurs at midspan due to a static load at this point.
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applications involving velocities considerably larger than v*.

One approach toward rectification of this problem requires the

formation of higher-ordered polynomials which are continuous in the

second derivative across the grid points of the structure. Higher

polynomials have additional coefficients and, as in the previous deri-

vation, these coefficients are equal in number to the element degrees
e

of freedom, i.e. , the generalized displacements ui

The establishment of polynomial displacement functions proceeds in

the same manner as before, with the added conditions:

y",(o) = u3  ; y"(1) - u6

SThe result is that y(x) will be approximated interior to an element by:
A

y(x) - a(x)ue ;

where a and ueare now vectors with six components instead of four.

The new (A) element matrices are calculated according to equation

(14). The multiplication and integration was accomplished analytically

by a computer program called MNIP which was written in the FORMAC

-language - giving analytical expressions as output. Similarly, new

expressions for cl, c2 , and c3 for use in equation (15) were formed

using this program. ie and ;a compose the constant elements of the

matrices _ and ,e and are found to be:
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Figure 16 shows the improved results obtained through the use of the

quintic polynomial. Comparison should be made with the results obtained

via the cubic polynomial as shown in figure 15(a). The price paid,

however, is increased computation time due to the additi.nal degrees

of freedom induced through the use of the quintic. One also faces

increasing amount of ill-conditioning in tihe matrix equations of motion

due to the widely differing magnitudes induced in the coefficient ma-

trices and their corresponding output variables. Future work will

concentrate on these problems and the use of less time-consuming

integration algorithms.
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